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‘We present a recursive proportional-feedback (RPF) algorithm for controlling deterministic chaos.
The algorithm is an adaptation of the method of Dressler and Nitsche [Phys. Rev. Lett. 68, 1 (1992)]
to highly dissipative systems with a dynamics that shows a nearly one-dimensional return map of
a single variable X measured at each Poincaré cycle. The result extends the usefulness of simple
proportional-feedback control algorithms. The change in control parameter prescribed for the nth
Poincaré cycle by the RPF algorithm is given by é§pn = K(Xn — Xr) + Répn—1, where Xr is the
fixed point of the target orbit, and K and R are proportionality constants. The recursive term is
shown to arise fundamentally because, in general, the Poincaré section of the attractor near Xr will
change position in phase space as small changes are made in the control parameter. We show how
to obtain K and R from simple measurements of the return map without any prior knowledge of
the system dynamics and report the successful application of the RPF algorithm to model systems
from chemistry and biology where the recursive term is necessary to achieve control.

PACS number(s): 05.45.+b, 06.70.Td, 87.10.4+e

I. INTRODUCTION

A control algorithm for stabilizing unstable saddle or-
bits that densely populate a chaotic attractor by ap-
plying small changes to a single control parameter was
first proposed by Ott, Grebogi, and Yorke [1] (OGY).
The general OGY algorithm is dramatically simplified in
highly dissipative systems that are well characterized by a
one-dimensional return map. Peng, Petrov, and Showal-
ter [2], using model systems, and Hunt [3], by experi-
mentally controlling the diode resonator circuit, demon-
strated that control can be achieved by applying a 6p,
on the nth Poincaré cycle that is simply proportional to
the deviation of X, from the fixed point X of the target
orbit on the return map. In this paper we refer to this
type of control algorithm as simple proportional feedback
(SPF). Many nonlinear chemical and biological systems
tend to be highly dissipative and SPF would seem to be
applicable.

However, Petrov, Peng, and Showalter [4] recently
demonstrated that the SPF algorithm does not always
work for some choices of the control parameter even when
the system is shown to have one-dimensional map be-
havior. If the Poincaré section of the attractor moves
in phase space when the parameter p is changed and if
Dn—1 # Dn, then X, is not on the attractor corresponding
to p = p, and the usual static one-dimensional map is
not valid. Petrov, Peng, and Showalter suggest a clever
modification of SPF in such a case. They point out that,
at least in some cases, a linear combination of control pa-
rameters can be found that does not move the Poincaré
section. The linear combination can then be used as the
single control parameter with the SPF algorithm to af-
fect control. But, in a real experimental situation, it may
not be possible to get experimental access to a particular
control parameter, and the required linear combination
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of parameters needed to save the SPF method may be
impossible to realize.

Dressler and Nitsche [5] recently showed that a similar
situation exists when time-delay coordinates are used to
reconstruct the phase space in which the OGY algorithm
is applied. They show that the general OGY algorithm
must be modified such that the correction §p,, applied
during the current cycle depends not only on the vector
deviation of the system from the fixed point but also on
the correction ép,—1 made during the previous cycle.

In this paper we apply the Dressler and Nitsche [5]
approach to the case where the system dynamics is re-
constructed from measurements of a one-dimensional re-
turn map. The result is a recursive proportional-feedback
(RPF) algorithm that allows control with any choice of
a single control parameter. In the following sections we
derive the RPF algorithm, show how the proportionality
constants necessary for implementation of the algorithm
are determined, and apply the algorithm to models of
both chemical and biological systems where the recur-
sive term is necessary.

II. DEVELOPMENT OF RPF ALGORITHM

The one-dimensional return map is the result of high
dissipation, which causes the reduction of the chaotic at-
tractor to a very thin (nearly two-dimensional) structure
embedded in a three-dimensional phase space (X,Y,Z)
of the system. Neglecting the thickness of the attrac-
tor, a Poincaré section through the two-dimensional at-
tractor at Z = Z. gives a one-dimensional (1D) curve.
(Note that Z could be dX/dt obtained from measure-
ments of a time series of the single variable X so that
the Poincaré section, and one-dimensional map, can be
experimentally obtained from measurements of a single
variable.) For a particular value of the control param-
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eter p, the one-dimensional curve may be expressed as
Y = h(X;p), and the Poincaré map equation for X is of
the form X1 = g(Xn,Yn;p) = 9(Xn, h(Xn;p);p), or
Xn+1 = f(Xn;p). This is the usual 1D return map that
depends parametrically on the single parameter p.

Now we consider the case where p is changed by a small
amount ép about p = pg on each Poincaré cycle. If we
change from p,_1 to p, at the beginning of the nth cycle,
then the system will be on the attractor corresponding
to pn—1 at the start of the cycle. We assume the high
dissipation ensures that the system will settle onto the
attractor corresponding to p, by the end of the Poincaré
cycle. Thus,

Y, = h(Xn;pn—l) (1)

and at the end of the nth cycle X = X, =
9(Xn, Ynipn) = 9(Xn, A(Xn;Pn-1); pn). Thus, the gen-
eral 1D return-map equation is

Xnt+1 = f(XniPrn-1,Pn). (2)

Note that if Eq. (1) does not depend on p,—; (i.e., the
Poincaré section of the attractor does not move in phase
space as p is changed), then the simple map of the previ-
ous paragraph is recovered. Figures 1(a) and 1(b) show
how small changes in two different model parameters af-
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FIG. 1. Poincaré sections for the chemical model dis-

cussed in Sec. IV. (a) Circles, for model parameter s = so =
9.7 x 1075; and squares, for s = so + s, where §s = 7 x 1078,
(b) Circles, for model parameter p = po = 2 X 10~4; and
squares, for p = po + 6p, where 6p = 7 x 1078, The enlarged
symbol is the position of the fixed point for the period-one
orbit in each case.

RAPID COMMUNICATIONS

R781

fect the Poincaré section of a chaotic attractor for a model
describing metal passivation in an electrochemical cell
discussed in Sec. IV. If model parameter s is changed
slightly, then Fig. 1(a) shows that the attractor moves
such that its Poincaré section does not shift position.
However, if model parameter p is changed, the Poincaré
section moves as shown in Fig. 1(b). The SPF algorithm
fails with p as the control parameter.

Now we consider the natural dynamics of the system
described by Eq. (2) near the fixed point of the period-
one orbit for p = po; Xr = f(XF,po,po). To first order
in 6X, = (X, — Xr), 6pn—1, and 6p,, we have

6Xpt1 = péX, + wbpn_1 + vépn, (3)

where p = 90f(Xp,p0,00)/0Xn, w = (8g9/8Y,)(8h/
Opn-1), and v = 8f(Xr,po,p0)/Opn. Note that u is
the slope of the one-dimensional return map at the fixed
point for p = pp and w = 0 if h is independent of p.

We want to determine the 6p,, such that the system is
brought to the fixed point as quickly as possible. Several
strategies could be applied. We use the strategy 6 X 42 =
0 and épn+1 = 0 and then the first and second iterate of
Eq. (3) give the recursive control algorithm:

bpp = K6X, + R6pn_1, (4)
where
2
@ pw
(o +w)’ > (nv +w) )

III. DETERMINATION OF PARAMETERS

The parameters necessary to implement the RPF
method (Xp, p, w, and v) can be easily determined
from two types of 1D return-map measurements. For a
constant parameter value near pg, a plot of X, ver-
sus X, defines the 1D mapping function f.(X;ép) =
f(X;po+6p,po + 6p). The value of Xp = f.(Xr;0) and
the slope u of the function f. at X = Xp are obtained
from X,, data taken with §p = 0. The values of v and w
are obtained from the sequence X,,’s measured while re-
peatedly alternating the control parameter up to pg + ép
for one Poincaré cycle and then back to po for the next cy-
cle. Alternate pairs (X,,Xn+1) taken from this measured
sequence lie on two maps f,.(X;8p) and f»(X;6p) where
fu(Xn;8p) = f(Xn;po,po + 6p) = fe(Xn;0) + vép and
fo(Xn;6p) = f(Xn;po + 8p,po) = fe(Xn;0) + wép. An
example of the three return maps is shown in Fig. 2. It
is easiest to measure the fixed points of these two maps,

U = f,(X¥;6p) and X8 = fr(X%;6p). We define g,
and gy such that X% = Xp + g,6p and X% = X + gs6p.
Then, as shown in Fig. 2, w and v can be expressed in
terms of y, gy, and gp by w = (1—p)gu, and v = (1—p)gs.
Now, Eq. (5) becomes

2
K U Hgb (6)

T w-Duga+g0) T (uga+90)

Following OGY, we define the shift in the fixed point
for constant shift §p in control parameter as gép. Then,
from the above definitions, we have the following sum
rule:
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FIG. 2. Diagram showing the three (nearly 1D) mapping
functions defined in the text f.(z;0), fu(z;ép), and fu(z; 6p)
in the neighborhood of the fixed point X7. The data are taken
from the numerical solution of the chemical model discussed
in Sec. IV. The fractal nature of the return map is clear at
this scale and we choose corresponding fixed points on each
map. The geometrical relationships between the parameters
w and v and the parameters related to the shift in the fixed
points g, and g, are shown.

w+v
g—m—gu—ng- )
Also, note that if w =0 then g, =0, g, =g, and R =0,
so that the RPF algorithm reduces to the SPF algorithm
6pn, = [/ (1—1)g)6X,, of Peng, Petrov, and Showalter [2].

IV. APPLICATION TO MODELS

We now apply the RPF control algorithm to stabi-
lizing periodic orbits within a chaotic attractor in two
model systems where SPF fails. The first system is a
kinetic rate-equation model for metal passivation [6] and
the second system is a diffusively coupled two-oscillator
model [4, 10, 11] for the respiratory behavior of a bacte-
rial culture. Both cases lead to nearly 1D return maps
but SPF fails for several control parameters. A stan-
dard fourth-order Runge-Kutta algorithm was used to
integrate the model equations.

In preparation for performing experimental control of
chaotic behavior in a chemical system, we attempted con-
trol by computer simulation using a mathematical model
of a similar system. We found that the SPF algorithm
failed in controlling chaos in the model and, out of ne-
cessity, the RPF algorithm described in the previous sec-
tions was developed and successfully applied. The chem-
ical system under consideration is the passivation of the
reactive surface of a metal electrode in an electrochemi-
cal cell. The chemical kinetics of the passivation model
includes the formation of two surface films, MOH and
MO, where M represents the metal atom. It combines
elements from surface reaction models by Talbot and Ori-
ani [7] for MOH and by Sato [8] for MO formation. The
chemical kinetics lead to the dimensionless equations [9]

R. W. ROLLINS, P. PARMANANDA, AND P. SHERARD 47

Y =p(1 — 6o — o) — qY, (8)
fon =Y (1 — fou — 60) — [exp (—B0on) + rlfon

+ 2s60(1 — fon — 60), (9)

éo = ’I‘eoﬂ - 390(1 - 00[{ - 90), (10)

where Y is the concentration of metal ions in the elec-
trolyte, fou and 0o are the respective fraction of the
metal surface covered by each film, p, g, 7, and s are pa-
rameters related to chemical rate constants, and 3 repre-
sents the non-Langmuir nature of MOH film formation
in the Talbot-Oriani model. The system has been studied
recently in some detail [9] and is chaotic for parameter
values (p, q, 7, s, 8) = (2.0x 1074, 1.0 x 1073, 2.0 x 1075,
9.7 x 107®, 5.0). The discussion below concerns the be-
havior of the system in the neighborhood of this point in
parameter space.

In an experimental cell, the parameter p is related to
the anodic potential, which can be changed by the ex-
perimenter. The parameter s, on the other hand, is re-
lated to rate constants that are not easily accessible to
the experimenter. Figures 1(a) and 1(b) show that the
Poincaré section moves when the experimentally accessi-
ble parameter p is changed (the variable X in this case is
the metal-oxide film coverage 8o and the Y coordinate is
proportional to the concentration of metal ions in solu-
tion). Attempts to control using the SPF algorithm were
successful when using s but failed when using the experi-
mentally accessible parameter p. The RPF algorithm was
applied to stabilize the period-one unstable saddle orbit.
We used 6p = 5 x 10~° when alternating p to obtain
fu(X;6p) and fp(X; 6p). Figure 2 shows the three return
maps fe(), fu(), and fo() for X = 6o taken when fon
passes the Poincaré plane 8oy = 0.3125 with 6oy < 0.
The values Xp = 0.1171692, u = —2.44, g, = 4420, and
g = —3230 were obtained from data as shown in Fig. 2.
Equation (6) then gives K = 1.24 x 10~ and R = 0.562
for the RPF algorithm. While the system was on the
chaotic attractor the control was turned on and the RPF
correction was applied whenever |X,, — Xr| < 4 x 1075.
The results of turning the control on and off are indicated
by the time series of 6o at the Poincaré section shown in
Fig. 3. We never observed the system to fall off the stabi-
lized period-one orbit so long as the RPF algorithm was
continually applied. We also used the RPF algorithm to
stabilize a period-two orbit by using the second iterate
of the Poincaré return map. The properties of the sec-
ond iterate 1D maps gave Xp = 0.11749788, u = —4.75,
g = 3870, and g, = —3259. This gave K = 1.18 x 104
and R = 0.715. The results of turning the control on are
also shown in Fig. 3.

Finally, we report the successful application of the
RPF algorithm to a system for which the SPF was al-
ready shown to fail (if a single control parameter was
used) by Petrov, Peng, and Showalter [4]. The respira-
tory behavior of bacterial culture has been modeled by
the dimensionless equations [4, 11]

€1 =by — z1 — 1y1/(1 + @12%) + Doc(z2 — 21), (11)

v1=a1 — 2191/ (1 + q123) + Dyc(y2 — y1), (12)
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FIG. 3. Sequence of 6o values taken at the Poincaré sec-
tion (described for the chemical system in Sec. IV) as the RPF
control for period-one orbit is turned on and off and then RPF
for control of period-two orbit is turned on.

Ty =by — T3 — Tay2/(1 + q273) — Dzc(z2 — 21),  (13)
Y2 = az — Tay2/(1 + @223) — Dyc(yz2 — y1), (14)
where x and y are system variables; a, b, and q are param-
eters of the uncoupled oscillators; D, D, are the z and
y diffusion coefficients; and c is the coupling strength.
Petrov, Peng, and Showalter [4] found that SPF con-
trol using a single control parameter generally was not
possible. They were unable to find a parameter that
did not move the Poincaré section of the attractor in
phase space. They were successful if they chose a spe-
cial linear combination of a; and b; such that the fixed
point moved along the attractor that remained station-
ary in the phase space. We chose the single parameter
a1 to affect the control using the RPF algorithm. Con-
trol was applied to a period-one orbit embedded in the
chaotic attractor at the same point in parameter space
as used by Petrov, Peng, and Showalter [4] (a1 = a2,
b1 = ba, q1 = g2, Dy, Dy, c)= (8.9, 11, 0.5, 1 x 1075,
1 x 10~3, 4000). We used da; = 0.03 when alternating
a3 to obtain fy(z;8a;) and fy(x;6a;). The return maps
were taken from a series of x;,, taken when y, passes the
plane y, = 13.45 with 3 > 0. The values Xr = 2.033,
u = —2.34, g, = —0.2302, and g, = —0.1665 were
taken from data like that shown in Fig. 2. Equation
(6) then gives K = —4.403 and R = —1.046, which were
used to implement the RPF algorithm. While the sys-
tem was on the chaotic attractor the control was turned
on and the RPF correction was then applied whenever
|21, — XF| < 0.01. The results of turning the control

Iteration Number
FIG. 4. Sequence of z; values taken at the Poincaré sec-
tion (described for the biological system in Sec. IV) as RPF
control is turned on and off several times.

on and off are indicated by the time series of z; at the
Poincaré section shown in Fig. 4. As with the RPF con-
trol of the chemical system, we never observed the system
to fall off the stabilized periodic orbit so long as the RPF
algorithm was continually applied.

V. CONCLUSION

A RPF algorithm was developed for controlling chaos
in systems described by one-dimensional return maps.
Previous proportional-feedback algorithms, at least in
the small-perturbation regime, are generally limited to
control parameters that do not affect the position of the
Poincaré section of the attractor in phase space. We show
that the recursive algorithm removes this limitation and
yet is easy to implement in real experimental systems.
We believe the simple RPF algorithm is widely applica-
ble to systems found in physics, chemistry, and biology.
Our preliminary results on applying RPF to control a
real chemical system are encouraging.
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